python - Convert pandas df multi index to columns -


first post here, assistance appreciated.

after reading csv file response api request using python urllib2, left multi index df. contains 19 index' 2 'columns'.

how convert these 19 index' additional columns please?

i tried resting index, no luck.

from urllib2 import request, urlopen, urlerror import pandas pd

url = 'url string here'  response = urlopen(request) df = pd.read_csv(response) df.reset_index().head() 

to clear, example if index 1 contains letters a,b,c,d, change index column tittled 'letter' every row containing 1 of these letters. when reset_index, indeed populate every row letter, however, column still index..

edit.. .added more code first part gets df.

from urllib2 import request, urlopen, urlerror import pandas pd  host = 'testapi.bmreports.com' port = '443' rep_name = 'detsysprices' version = 'v1' key = 'ldytgh1ylq0k92c' sd = '2016-05-26' sp = 20 criteria = (host,port,rep_name,version,key,sd,sp) url = 'https://%s:%s/bmrs/%s/%s?apikey=%s&settlementdate=%s&settlementperiod=%d&servicetype=csv' % criteria request = request(url) #print url  response = urlopen(request) df = pd.read_csv(response) df   hdr indicative system price stack data bid 20160526    20  1   1   nan nan f   t   f   f   nan 266.0329    -230.211    -230.211    -149.786    -149.786    -48.05  266.0329    1.00000 -48.050 -12782.88 2   t_didcb6    109615  -1  f   f   f   f   nan 26.0000 -1.950  -1.950  -1.950  -1.950  -1.95   26.0000 0.98947 -1.929  -50.17 3   t_coso-1    119674  -1  t   f   f   f   nan 25.9000 -0.279  0.000   0.000   0.000   0.00    0.0000  0.00000 0.000   0.00 offer   20160526    20  1   t_wburb-2   25968   2   f   f   f   f   0   46.0000 16.163  16.163  0.000   0.000   0.00    0.0000  0.00000 0.000   0.00 2   t_wburb-2   25968   1   f   f   f   f   0   46.0000 3.037   3.037   0.000   0.000   0.00    0.0000  0.00000 0.000   0.00 3   t_cnqps-4   45744   1   f   f   f   f   0   50.0000 0.975   0.000   0.000   0.000   0.00    0.0000  0.00000 0.000   0.00 4   t_damc-1    85044   1   f   f   f   f   0   64.5000 4.583   4.583   0.000   0.000   0.00    0.0000  0.00000 0.000   0.00 5   t_damc-1    85045   1   f   f   f   f   0   64.5000 0.083   0.083   0.000   0.000   0.00    0.0000  0.00000 0.000   0.00 6   t_damc-1    85046   1   f   f   f   f   0   64.5000 22.000  22.000  0.000   0.000   0.00    0.0000  0.00000 0.000   0.00 7   t_bage-1    33725   1   t   f   f   f   0   70.0000 1.583   1.583   0.000   0.000   0.00    0.0000  0.00000 0.000   0.00 8   t_sutb-1    68274   1   t   f   f   f   0   72.0000 4.000   4.000   0.000   0.000   0.00    0.0000  0.00000 0.000   0.00 9   t_humr-1    99956   2   f   f   f   f   0   82.4700 9.250   9.250   0.000   0.000   0.00    0.0000  0.00000 0.000   0.00 10  t_humr-1    99956   1   f   f   f   f   0   82.4700 0.250   0.000   0.000   0.000   0.00    0.0000  0.00000 0.000   0.00 11  t_humr-1    99955   2   f   f   f   f   0   82.4700 0.647   0.647   0.000   0.000   0.00    0.0000  0.00000 0.000   0.00 12  t_humr-1    99955   1   f   f   f   f   0   82.4700 0.033   0.000   0.000   0.000   0.00    0.0000  0.00000 0.000   0.00 13  t_humr-1    99956   3   f   f   f   f   0   95.9700 10.317  10.317  0.000   0.000   0.00    0.0000  0.00000 0.000   0.00 14  t_humr-1    99955   3   f   f   f   f   0   95.9700 0.004   0.004   0.000   0.000   0.00    0.0000  0.00000 0.000   0.00 15  t_foye-1    92982   1   t   f   f   f   0   103.0000    1.258   1.258   0.000   0.000   0.00    0.0000  0.00000 0.000   0.00 16  t_foye-1    92983   1   t   f   f   f   0   103.0000    7.500   7.500   0.000   0.000   0.00    0.0000  0.00000 0.000   0.00 ftr 19  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 

in second part, attempt reset...

df.reset_index() df.index     multiindex(levels=[[u'bid', u'ftr', u'offer'], [19, 20160526], [20.0], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0], [u'1', u't_bage-1', u't_cnqps-4', u't_coso-1', u't_damc-1', u't_didcb6', u't_foye-1', u't_humr-1', u't_sutb-1', u't_wburb-2'], [25968.0, 33725.0, 45744.0, 68274.0, 85044.0, 85045.0, 85046.0, 92982.0, 92983.0, 99955.0, 99956.0, 109615.0, 119674.0], [-1.0, 1.0, 2.0, 3.0], [u'f', u't'], [u'f', u't'], [u'f'], [u'f'], [0.0], [25.9, 26.0, 46.0, 50.0, 64.5, 70.0, 72.0, 82.47, 95.97, 103.0, 266.0329], [-230.211, -1.95, -0.279, 0.004, 0.033, 0.083, 0.25, 0.647, 0.975, 1.258, 1.583, 3.037, 4.0, 4.583, 7.5, 9.25, 10.317, 16.163, 22.0], [-230.211, -1.95, 0.0, 0.004, 0.083, 0.647, 1.258, 1.583, 3.037, 4.0, 4.583, 7.5, 9.25, 10.317, 16.163, 22.0], [-149.786, -1.95, 0.0], [-149.786, -1.95, 0.0], [-48.05, -1.95, 0.0], [0.0, 26.0, 266.0329], [0.0, 0.98947, 1.0]],            labels=[[0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1], [0, 1, 2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, -1], [0, 5, 3, 9, 9, 2, 4, 4, 4, 1, 8, 7, 7, 7, 7, 7, 7, 6, 6, -1], [-1, 11, 12, 0, 0, 2, 4, 5, 6, 1, 3, 10, 10, 9, 9, 10, 9, 7, 8, -1], [-1, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 3, 1, 1, -1], [0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, -1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1], [-1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1], [10, 1, 0, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 7, 7, 8, 8, 9, 9, -1], [0, 1, 2, 17, 11, 8, 13, 5, 18, 10, 12, 15, 6, 7, 4, 16, 3, 9, 14, -1], [0, 1, 2, 14, 8, 2, 10, 4, 15, 7, 9, 12, 2, 5, 2, 13, 3, 6, 11, -1], [0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1], [0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1], [0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1], [2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1], [2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1]]) 

i think can add parameter inplace reset_index:

df.reset_index(inplace=true) 

or assign back:

df = df.reset_index() 

sample:

import pandas pd import io  temp=u"""hdr;indicative;system;price;stack;data bid;20160526;20;1;1;nan;nan;f;t;f;f;nan;266.0329;-230.211;-230.211;-149.786;-149.786;-48.05;266.0329;1.00000;-48.050;-12782.88 2;t_didcb6;109615;-1;f;f;f;f;nan;26.0000;-1.950;-1.950;-1.950;-1.950;-1.95;26.0000;0.98947;-1.929;-50.17 3;t_coso-1;119674;-1;t;f;f;f;nan;25.9000;-0.279;0.000;0.000;0.000;0.00;0.0000;0.00000;0.000;0.00 offer;20160526;20;1;t_wburb-2;25968;2;f;f;f;f;0;46.0000;16.163;16.163;0.000;0.000;0.00;0.0000;0.00000;0.000;0.00 2;t_wburb-2;25968;1;f;f;f;f;0;46.0000;3.037;3.037;0.000;0.000;0.00;0.0000;0.00000;0.000;0.00 3;t_cnqps-4;45744;1;f;f;f;f;0;50.0000;0.975;0.000;0.000;0.000;0.00;0.0000;0.00000;0.000;0.00 4;t_damc-1;85044;1;f;f;f;f;0;64.5000;4.583;4.583;0.000;0.000;0.00;0.0000;0.00000;0.000;0.00 5;t_damc-1;85045;1;f;f;f;f;0;64.5000;0.083;0.083;0.000;0.000;0.00;0.0000;0.00000;0.000;0.00 6;t_damc-1;85046;1;f;f;f;f;0;64.5000;22.000;22.000;0.000;0.000;0.00;0.0000;0.00000;0.000;0.00 7;t_bage-1;33725;1;t;f;f;f;0;70.0000;1.583;1.583;0.000;0.000;0.00;0.0000;0.00000;0.000;0.00 8;t_sutb-1;68274;1;t;f;f;f;0;72.0000;4.000;4.000;0.000;0.000;0.00;0.0000;0.00000;0.000;0.00 9;t_humr-1;99956;2;f;f;f;f;0;82.4700;9.250;9.250;0.000;0.000;0.00;0.0000;0.00000;0.000;0.00 10;t_humr-1;99956;1;f;f;f;f;0;82.4700;0.250;0.000;0.000;0.000;0.00;0.0000;0.00000;0.000;0.00 11;t_humr-1;99955;2;f;f;f;f;0;82.4700;0.647;0.647;0.000;0.000;0.00;0.0000;0.00000;0.000;0.00 12;t_humr-1;99955;1;f;f;f;f;0;82.4700;0.033;0.000;0.000;0.000;0.00;0.0000;0.00000;0.000;0.00 13;t_humr-1;99956;3;f;f;f;f;0;95.9700;10.317;10.317;0.000;0.000;0.00;0.0000;0.00000;0.000;0.00 14;t_humr-1;99955;3;f;f;f;f;0;95.9700;0.004;0.004;0.000;0.000;0.00;0.0000;0.00000;0.000;0.00 15;t_foye-1;92982;1;t;f;f;f;0;103.0000;1.258;1.258;0.000;0.000;0.00;0.0000;0.00000;0.000;0.00 16;t_foye-1;92983;1;t;f;f;f;0;103.0000;7.500;7.500;0.000;0.000;0.00;0.0000;0.00000;0.000;0.00 ftr;19;nan;nan;nan;nan;nan;nan;nan;nan;nan;nan;nan;nan;nan;nan;nan;nan;nan;nan;nan;nan""" #after testing replace io.stringio(temp) filename df = pd.read_csv(io.stringio(temp), sep=";", index_col=none, parse_dates=false) #print (df)  print (df.index) multiindex(levels=[['10', '11', '12', '13', '14', '15', '16', '2', '3', '4', '5', '6', '7', '8', '9', 'bid', 'ftr', 'offer'], ['19', '20160526', 't_bage-1', 't_cnqps-4', 't_coso-1', 't_damc-1', 't_didcb6', 't_foye-1', 't_humr-1', 't_sutb-1', 't_wburb-2'], [20.0, 25968.0, 33725.0, 45744.0, 68274.0, 85044.0, 85045.0, 85046.0, 92982.0, 92983.0, 99955.0, 99956.0, 109615.0, 119674.0], [-1.0, 1.0, 2.0, 3.0], ['1', 'f', 't', 't_wburb-2'], ['25968', 'f'], ['2', 'f'], ['f'], ['0', 'f', 't'], ['103.0000', '25.9000', '26.0000', '46.0000', '50.0000', '64.5000', '70.0000', '72.0000', '82.4700', '95.9700', 'f'], ['-0.279', '-1.950', '0.004', '0.033', '0.083', '0.250', '0.647', '0.975', '1.258', '1.583', '10.317', '22.000', '3.037', '4.000', '4.583', '7.500', '9.250', 'f'], [-1.95, 0.0, 0.004, 0.083, 0.647, 1.258, 1.583, 3.037, 4.0, 4.583, 7.5, 9.25, 10.317, 22.0], [-1.95, 0.0, 46.0, 266.0329], [-230.211, -1.95, 0.0, 16.163], [-230.211, -1.95, 0.0, 16.163], [-149.786, 0.0, 26.0]],            labels=[[15, 7, 8, 17, 7, 8, 9, 10, 11, 12, 13, 14, 0, 1, 2, 3, 4, 5, 6, 16], [1, 6, 4, 1, 10, 3, 5, 5, 5, 2, 9, 8, 8, 8, 8, 8, 8, 7, 7, 0], [0, 12, 13, 0, 1, 3, 5, 6, 7, 2, 4, 11, 11, 10, 10, 11, 10, 8, 9, -1], [1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 3, 1, 1, -1], [0, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, -1], [-1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1], [-1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1], [2, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1], [10, 2, 1, 10, 3, 4, 5, 5, 5, 6, 7, 8, 8, 8, 8, 9, 9, 0, 0, -1], [17, 1, 0, 17, 12, 7, 14, 4, 11, 9, 13, 16, 5, 6, 3, 10, 2, 8, 15, -1], [-1, 0, 1, 1, 7, 1, 9, 3, 13, 6, 8, 11, 1, 4, 1, 12, 2, 5, 10, -1], [3, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1], [0, 1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1], [0, 1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1], [0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1]]) 
df.reset_index(inplace=true)  print (df.index) rangeindex(start=0, stop=20, step=1) 

Comments

Popular posts from this blog

ios - RestKit 0.20 — CoreData: error: Failed to call designated initializer on NSManagedObject class (again) -

java - Digest auth with Spring Security using javaconfig -

laravel - PDOException in Connector.php line 55: SQLSTATE[HY000] [1045] Access denied for user 'root'@'localhost' (using password: YES) -